
Asynchronous 
Operations

Dietmar Kühl 
Bloomberg L.P. 

ACCU 2015



Copyright Notice
© 2015 Bloomberg L.P. Permission is granted to copy, 
distribute, and display this material, and to make 
derivative works and commercial use of it.  The 
information in this material is provided "AS IS", without 
warranty of any kind.  Neither Bloomberg nor any 
employee guarantees the correctness or completeness of 
such information. Bloomberg, its employees, and its 
affiliated entities and persons shall not be liable, directly 
or indirectly, in any way, for any inaccuracies, errors or 
omissions in such information. Nothing herein should be 
interpreted as stating the opinions, policies, 
recommendations, or positions of Bloomberg. 



The Problem

• make progress during long running operations 

• external source/sink like I/O or database 

• involved computations run elsewhere 

• do not block dedicated threads (like UI thread) 

• I/O will be used in examples



Simple Approach

• just read without consideration of concurrency:  
 
int size = read(fd, buffer, sizeof(buffer)); 

• may block indefinitely if there is no data, yet 

• even for files may need to wait for data to arrive



Threads

• run long operations in a thread: 
 
future<int> f = async(read, fd, buffer, size); 
// … 
int size = f.get(); // caution: will probably block 

• f.wait_for() == future_status::ready to test 

• still blocks one thread, just not the current one



Blocking Threads

• threads are intended to run code, not to block 

• threads are fairly heavy weight: 

• each thread allocates a stack 

• the system tracks which threads can run 

• number of threads is relatively limited



I/O Thread(s)

• run I/O operations on dedicated threads: 

• auto f = io.read(fd, buffer, sizeof(buffer)) 

• instead of blocking I/O operations poll(2): 

• few (e.g., one) threads are blocked on I/O 

• much better resource use



Implementing read()

• send request to another thread:  
 
std::future<int> io::read(int fd, void* b, size_t s) { 
   std::promise<int> p; 
   std::future<int>     rc(p.get_future());  
   this->enqueue(std::move(p), ::read, fd, b, s); 
   return rc; 
}



I/O Thread

• use poll() (or similar) to block on many streams: 
 
std::vector<pollfd> polls(fill_from_requests());  
if (0 < poll(polls.data(), polls.size(), 1)) { 
    int index = find_next_entry(polls);  
    request& r = requests[index];  
    r.promise.set_value(::read(r.fd, r.b, r.s)); 
}



Blocking std::future<T>

• non-ready std::future<T> block upon access: 
 
auto f = io.read(fd, buffer, sizeof(buffer));  
// do some work 
auto size = f.get(); // may still block  
use(buffer, size); 

• worse: you can’t easily check if that will block



std::future<T>::then()
• proposed std::future<T>::then() (N3857):  
 
auto f0 = io.read(fd, buffer, sizeof(buffer));  
auto f1 = f0.then([=](std::future<int> size){  
                           return use(buffer, size.get()); })); 

• register a function to be executed next 

• called with ready future: size.get() won’t block  
but it can also communicate an error



std::future Improvements
• then(), also using launch policy and executor 

• unwrap(): get inner future from a nested future 
(std::future<std::future<T>>) 

• f.is_ready(): determine if f.get() won’t block 

• when_any(), when_any_swapped(), when_all(): 
yield std::future<std::vector<std::future<T>>> 

• make_ready_future<T>(value)



Continuation Functions

• async operations: inversion of control: 

• instead of blocking specify how to carry on 

• well-known approach: event-driven 

• sadly, it is relatively complex (see later though) 

• std::future<T>::then() requires synchronisation



.then() Synchronization
Caller

Continuation

future
async operation

create

initiate
create

then()
p.set_value()

call



.then() Synchronization
Caller

Continuation

future
async operation

create

initiate
create

then()
p.set_value()

call



Allowing Callbacks

• control gets inverted anyway: allow callbacks  
 
io.read(fd, buffer, sizeof(buffer),  
            [=](int size){ use(buffer, size); }); 

• pass executor for control of running callbacks 

• can use .then(): set up before adding request



No Threads!
• callbacks called when work is available 

• central blocking place, e.g., poll() 

• can have multiple poll()ing threads 

•  one thread ⇒ no synchronisation needed 

• trade-off: sequence replaced by function calls



Callbacks
void run() { 
    socket.async_read_some(asio::buffer(buffer), 
        [=](asio::error_code ec, size_t size) {  
            if (!ec) on_read(size); 
        }); 
} 
void on_read(size_t size) { 
    // … 
    run(); 
}



Completion Token
• different strategies for continuations are useful 

• specification on how processing should proceed 

• callback ⇒ continue when ready 

• use_future ⇒ get back a suitable future 

• use form of coroutine ⇒ continue function



How to Complete
template<class CT> 
auto async_xyz(A… a, CT&& token) { 
    completion_handler_t 
           <decay_t<CT>, void(R… r)> 
        ch(forward<CT>(token)); 
    async_result<decltype(ch)> result(ch); 
    trigger asynchronous xyz => calling ch  
    return result.get(); 
}



Completion: Callbacks

• default type for the handler is the token 

• async_result<C> 

• calls the callback upon completion 

• returns void from result.get()



Get a Future
void run() { 
    auto f = s.async_read_some(asio::buffer(b), 
                                                 asio::use_future); 
    f.then([=](asio::error_code ec, size_t size) { 
         if (!ec) on_read(size);  
} 
void on_read(size_t size) { 
    // … 
    run(); 
}



Completion: Future

• use of future indicated by a token: use_future 

• use_future handler uses a promise/future: 

• completion function sets the promise 

• result.get() returns the future



Coroutines

• functions are single-entry, single-exit 

• coroutines are 

• started once 

• suspended/reentered multiple times 

• exited once



Coroutines in C++

• multiple proposals 

• resumable functions (N4402) 

• stackless coroutines (N4453) 

• stackful coroutines (N4397; sort of) 

• unified stackless/stackful coroutines (N4398)



Stackful Coroutines

• can stop/resume from any statement 

• stores stack up to entry point 

• relatively memory intensive 

• split stacks do help 

• at least 2 pages are typically needed



Stackful Example
using C=coroutines::asymmetric_coroutine<int>;  
C::pull_type pull([](C::push_type& push) { 
  for (int i(0); i != 2; push(i++)) 
    std::cout << "yielding i=" << i << '\n'; 
  }); 
 
  std::cout << "created pull-type\n"; 
  for (; pull; pull())  
    std::cout << "pulled " << pull.get() << '\n'; 
}



Stackful Output

yielding i=0 
created pull-type 
pulled 0 
yielding i=1 
pulled 1



Program Behaviour
program start

initial stack



Program Behaviour
main()

initial stack

main



Program Behaviour
create: C::pull_type

initial stack

main

ctor pull



Program Behaviour
create: C::pull_type - allocate coroutine stack

initial stack coroutine stack

main

ctor pull



Program Behaviour
create: C::pull_type - create lambda function

initial stack coroutine stack

main lambda

ctor pull



Program Behaviour
create: C::pull_type - yield

initial stack coroutine stack

main lambda

ctor pull



Program Behaviour
run lambda function

initial stack coroutine stack

main lambda

ctor pull operator()



Program Behaviour
for (int i = 0; i != 2;

initial stack coroutine stack

main lambda

ctor pull operator()



Program Behaviour
std::cout << “yielding i=“ << 0 << ‘\n’;

initial stack coroutine stack

main lambda

ctor pull operator()

output



Program Behaviour
for (….; push(0)) - set value

initial stack coroutine stack

main lambda

ctor pull operator()

push(0)



Program Behaviour
push(0); - yield

initial stack coroutine stack

main lambda

ctor pull operator()

push(0)



Program Behaviour
create: C::pull_type - finish

initial stack coroutine stack

main lambda

operator()

push(0)



Program Behaviour
std::cout << “created pull-type\n”;

initial stack coroutine stack

main lambda

output operator()

push(0)



Program Behaviour
for (; pull;

initial stack coroutine stack

main lambda

pull operator()

push(0)



Program Behaviour
std::cout << “pulled: “ << pull.get() << ‘\n’;

initial stack coroutine stack

main lambda

output/get() operator()

push(0)



Program Behaviour
for (…; pull())

initial stack coroutine stack

main lambda

pull() operator()

push(0)



Program Behaviour
for (…; pull()) - yield

initial stack coroutine stack

main lambda

pull() operator()

push(0)



Program Behaviour
for (…; i != 2; i++)

initial stack coroutine stack

main lambda

pull() operator()



Program Behaviour
std::cout << “yielding i=“ << 1 << ‘\n’;

initial stack coroutine stack

main lambda

ctor pull operator()

output



Program Behaviour
for (….; push(1)) - set value

initial stack coroutine stack

main lambda

ctor pull operator()

push(1)



Program Behaviour
push(1); - yield

initial stack coroutine stack

main lambda

ctor pull operator()

push(1)



Program Behaviour
for (… ; pull; )

initial stack coroutine stack

main lambda

pull operator()

push(1)



Program Behaviour
std::cout << “pulled: “ << pull.get() << ‘\n’;

initial stack coroutine stack

main lambda

output/get() operator()

push(1)



Program Behaviour
for (…; pull())

initial stack coroutine stack

main lambda

pull() operator()

push(1)



Program Behaviour
for (…; pull()) - yield

initial stack coroutine stack

main lambda

pull() operator()

push(1)



Program Behaviour
for (…; i != 2; i++)

initial stack coroutine stack

main lambda

pull() operator()



Program Behaviour
return from operator()

initial stack coroutine stack

main lambda

pull()



Program Behaviour
destroy lambda

initial stack coroutine stack

main

pull()



Program Behaviour
for (… ; pull; )

initial stack

main

pull



Program Behaviour
destroy pull object

initial stack

main

pull dtor



Program Behaviour
finish main()

initial stack

main



Symmetric/Asymmetric
• asymmetric: context yielded to is always implicit 

• initiator: pulling (not a coroutine) 

• coroutine: pushing 

• symmetric: context yielded to is specified 

• look more flexible 

• contexts need more management



Async vs. Coroutine

void run(socket& s, yield_context yield) { 
    char buffer[1024];  
    size sz = s.async_read_some(asio::buffer(b), 
                                                     yield); 
    // use sz and buffer  
}



Completion: Stackful

• use of coroutine via yield_context object 

• handler uses push context for completion 

• arguments become elements of the return 

• result.get() calls pull() and returns pull.get()



Stackless Coroutines
• cannot suspend from nested function calls 

• minimal state: an int where to carry on 

• any local variable kept while being resumable 

• very little state ⇒ there can be many instances 

• quite fast to suspend/resume 

• can be tested to see if they can be resumed



Stackless Example

struct function : asio::coroutine { 
    int operator()() { 
       reenter(*this) {  
          yield return 17;  
          yield return 19;  
       } 
       return 23; 
    } 
};



Stackless Use

function fun; 
 
while (!fun.is_complete()) {  
    std::cout << fun() << ‘\n’;  
}

• the example uses a macro hack 
• … but can be used straight forward

http://fun.is


Async vs. Stackless
struct function : asio::coroutine { 
    std::shared_ptr<rep> rep; 
    void operator()(error_code ec = error_code(),  
                             size_t size = 0) { 
        if (!error) reenter(*this) for (;;) { 
            yield rep->socket.async_read_some(  
                asio::buffer(rep->buffer), *this)); 
            use(rep->buffer, size); 
        } 
    } 
};



Completion: Stackless

• completion token is just a function object 

• same behaviour as for callbacks: 

• async_result<C> 

• calls the callback upon completion 

• returns void from result.get()



Executing Completions

• some thread needs to run completion handlers 

• run on the thread completing the operation 

• run somewhere else 

• approach: use executor to schedule handler 

• determined from involved objects



Executor
• schedules tasks (nullary function objects) 

• different ways to schedule tasks: 

• ex.dispatch(fun, alloc): maybe immediately 

• ex.post(fun, alloc): after post() but ASAP 

• ex.defer(fun, alloc): after defer() but not ASAP 

• use an execution context for the actual work



io_service
• execution context capable of doing I/O work 

• inactive unless at least one thread is running it 

• implements a pool of threads 

• ios.run() to add current thread to the pool 

• multiple threads can join the pool 

• one thread ⇒ serial processing



Strand

• executor limiting execution to one thread 

• tasks are not executed concurrently 

• independent tasks are synchronised 

• order of tasks being added is retained



Fiber

• execution policy processing on one thread 

• cooperative/non-preemptive scheduling 

• uses similar techniques as coroutines 

• fiber-versions of classes used with threads: 

• mutex, condition_variable, future, promise



Standardization

• implemented in boost and separately 

• networking TS for ASIO (n4478) 

• different models for 

• executors 

• coroutines and resumable functions



Conclusion

• asynchronous scheduling allows concurrency 

• may use one thread avoiding many problems 

• coroutines ease the use of callbacks



Questions?


