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The Problem

• make progress during long running operations 

• external source/sink like I/O or database 

• involved computations run elsewhere 

• do not block dedicated threads (like UI thread) 

• I/O will be used in examples



Simple Approach

• just read without consideration of concurrency:  
 
int size = read(fd, buffer, sizeof(buffer)); 

• may block indefinitely if there is no data, yet 

• even for files may need to wait for data to arrive



Threads

• run long operations in a thread: 
 
future<int> f = async(read, fd, buffer, size); 
// … 
int size = f.get(); // caution: will probably block 

• f.wait_for() == future_status::ready to test 

• still blocks one thread, just not the current one



Blocking Threads

• threads are intended to run code, not to block 

• threads are fairly heavy weight: 

• each thread allocates a stack 

• the system tracks which threads can run 

• number of threads is relatively limited



I/O Thread(s)

• run I/O operations on dedicated threads: 

• auto f = io.read(fd, buffer, sizeof(buffer)) 

• instead of blocking I/O operations poll(2): 

• few (e.g., one) threads are blocked on I/O 

• much better resource use



Implementing read()

• send request to another thread:  
 
std::future<int> io::read(int fd, void* b, size_t s) { 
   std::promise<int> p; 
   std::future<int>     rc(p.get_future());  
   this->enqueue(std::move(p), ::read, fd, b, s); 
   return rc; 
}



I/O Thread

• use poll() (or similar) to block on many streams: 
 
std::vector<pollfd> polls(fill_from_requests());  
if (0 < poll(polls.data(), polls.size(), 1)) { 
    int index = find_next_entry(polls);  
    request& r = requests[index];  
    r.promise.set_value(::read(r.fd, r.b, r.s)); 
}



Blocking std::future<T>

• non-ready std::future<T> block upon access: 
 
auto f = io.read(fd, buffer, sizeof(buffer));  
// do some work 
auto size = f.get(); // may still block  
use(buffer, size); 

• worse: you can’t easily check if that will block



std::future<T>::then()
• proposed std::future<T>::then() (N3857):  
 
auto f0 = io.read(fd, buffer, sizeof(buffer));  
auto f1 = f0.then([=](std::future<int> size){  
                           return use(buffer, size.get()); })); 

• register a function to be executed next 

• called with ready future: size.get() won’t block  
but it can also communicate an error



std::future Improvements
• then(), also using launch policy and executor 

• unwrap(): get inner future from a nested future 
(std::future<std::future<T>>) 

• f.is_ready(): determine if f.get() won’t block 

• when_any(), when_any_swapped(), when_all(): 
yield std::future<std::vector<std::future<T>>> 

• make_ready_future<T>(value)



Continuation Functions

• async operations: inversion of control: 

• instead of blocking specify how to carry on 

• well-known approach: event-driven 

• sadly, it is relatively complex (see later though) 

• std::future<T>::then() requires synchronisation
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Allowing Callbacks

• control gets inverted anyway: allow callbacks  
 
io.read(fd, buffer, sizeof(buffer),  
            [=](int size){ use(buffer, size); }); 

• pass executor for control of running callbacks 

• can use .then(): set up before adding request



No Threads!
• callbacks called when work is available 

• central blocking place, e.g., poll() 

• can have multiple poll()ing threads 

•  one thread ⇒ no synchronisation needed 

• trade-off: sequence replaced by function calls



Callbacks
void run() { 
    socket.async_read_some(asio::buffer(buffer), 
        [=](asio::error_code ec, size_t size) {  
            if (!ec) on_read(size); 
        }); 
} 
void on_read(size_t size) { 
    // … 
    run(); 
}



Completion Token
• different strategies for continuations are useful 

• specification on how processing should proceed 

• callback ⇒ continue when ready 

• use_future ⇒ get back a suitable future 

• use form of coroutine ⇒ continue function



How to Complete
template<class CT> 
auto async_xyz(A… a, CT&& token) { 
    completion_handler_t 
           <decay_t<CT>, void(R… r)> 
        ch(forward<CT>(token)); 
    async_result<decltype(ch)> result(ch); 
    trigger asynchronous xyz => calling ch  
    return result.get(); 
}



Completion: Callbacks

• default type for the handler is the token 

• async_result<C> 

• calls the callback upon completion 

• returns void from result.get()



Get a Future
void run() { 
    auto f = s.async_read_some(asio::buffer(b), 
                                                 asio::use_future); 
    f.then([=](asio::error_code ec, size_t size) { 
         if (!ec) on_read(size);  
} 
void on_read(size_t size) { 
    // … 
    run(); 
}



Completion: Future

• use of future indicated by a token: use_future 

• use_future handler uses a promise/future: 

• completion function sets the promise 

• result.get() returns the future



Coroutines

• functions are single-entry, single-exit 

• coroutines are 

• started once 

• suspended/reentered multiple times 

• exited once



Coroutines in C++

• multiple proposals 

• resumable functions (N4402) 

• stackless coroutines (N4453) 

• stackful coroutines (N4397; sort of) 

• unified stackless/stackful coroutines (N4398)



Stackful Coroutines

• can stop/resume from any statement 

• stores stack up to entry point 

• relatively memory intensive 

• split stacks do help 

• at least 2 pages are typically needed



Stackful Example
using C=coroutines::asymmetric_coroutine<int>;  
C::pull_type pull([](C::push_type& push) { 
  for (int i(0); i != 2; push(i++)) 
    std::cout << "yielding i=" << i << '\n'; 
  }); 
 
  std::cout << "created pull-type\n"; 
  for (; pull; pull())  
    std::cout << "pulled " << pull.get() << '\n'; 
}



Stackful Output

yielding i=0 
created pull-type 
pulled 0 
yielding i=1 
pulled 1
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Program Behaviour
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Symmetric/Asymmetric
• asymmetric: context yielded to is always implicit 

• initiator: pulling (not a coroutine) 

• coroutine: pushing 

• symmetric: context yielded to is specified 

• look more flexible 

• contexts need more management



Async vs. Coroutine

void run(socket& s, yield_context yield) { 
    char buffer[1024];  
    size sz = s.async_read_some(asio::buffer(b), 
                                                     yield); 
    // use sz and buffer  
}



Completion: Stackful

• use of coroutine via yield_context object 

• handler uses push context for completion 

• arguments become elements of the return 

• result.get() calls pull() and returns pull.get()



Stackless Coroutines
• cannot suspend from nested function calls 

• minimal state: an int where to carry on 

• any local variable kept while being resumable 

• very little state ⇒ there can be many instances 

• quite fast to suspend/resume 

• can be tested to see if they can be resumed



Stackless Example

struct function : asio::coroutine { 
    int operator()() { 
       reenter(*this) {  
          yield return 17;  
          yield return 19;  
       } 
       return 23; 
    } 
};



Stackless Use

function fun; 
 
while (!fun.is_complete()) {  
    std::cout << fun() << ‘\n’;  
}

• the example uses a macro hack 
• … but can be used straight forward

http://fun.is


Async vs. Stackless
struct function : asio::coroutine { 
    std::shared_ptr<rep> rep; 
    void operator()(error_code ec = error_code(),  
                             size_t size = 0) { 
        if (!error) reenter(*this) for (;;) { 
            yield rep->socket.async_read_some(  
                asio::buffer(rep->buffer), *this)); 
            use(rep->buffer, size); 
        } 
    } 
};



Completion: Stackless

• completion token is just a function object 

• same behaviour as for callbacks: 

• async_result<C> 

• calls the callback upon completion 

• returns void from result.get()



Executing Completions

• some thread needs to run completion handlers 

• run on the thread completing the operation 

• run somewhere else 

• approach: use executor to schedule handler 

• determined from involved objects



Executor
• schedules tasks (nullary function objects) 

• different ways to schedule tasks: 

• ex.dispatch(fun, alloc): maybe immediately 

• ex.post(fun, alloc): after post() but ASAP 

• ex.defer(fun, alloc): after defer() but not ASAP 

• use an execution context for the actual work



io_service
• execution context capable of doing I/O work 

• inactive unless at least one thread is running it 

• implements a pool of threads 

• ios.run() to add current thread to the pool 

• multiple threads can join the pool 

• one thread ⇒ serial processing



Strand

• executor limiting execution to one thread 

• tasks are not executed concurrently 

• independent tasks are synchronised 

• order of tasks being added is retained



Fiber

• execution policy processing on one thread 

• cooperative/non-preemptive scheduling 

• uses similar techniques as coroutines 

• fiber-versions of classes used with threads: 

• mutex, condition_variable, future, promise



Standardization

• implemented in boost and separately 

• networking TS for ASIO (n4478) 

• different models for 

• executors 

• coroutines and resumable functions



Conclusion

• asynchronous scheduling allows concurrency 

• may use one thread avoiding many problems 

• coroutines ease the use of callbacks



Questions?


